3.24 \(\int \tan ^3(c+d x) (a+i a \tan (c+d x))^3 \, dx\)

Optimal. Leaf size=126 \[ -\frac{\tan ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d}-\frac{11 a^3 \tan ^4(c+d x)}{20 d}+\frac{4 i a^3 \tan ^3(c+d x)}{3 d}+\frac{2 a^3 \tan ^2(c+d x)}{d}-\frac{4 i a^3 \tan (c+d x)}{d}+\frac{4 a^3 \log (\cos (c+d x))}{d}+4 i a^3 x \]

[Out]

(4*I)*a^3*x + (4*a^3*Log[Cos[c + d*x]])/d - ((4*I)*a^3*Tan[c + d*x])/d + (2*a^3*Tan[c + d*x]^2)/d + (((4*I)/3)
*a^3*Tan[c + d*x]^3)/d - (11*a^3*Tan[c + d*x]^4)/(20*d) - (Tan[c + d*x]^4*(a^3 + I*a^3*Tan[c + d*x]))/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.171435, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {3556, 3592, 3528, 3525, 3475} \[ -\frac{\tan ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d}-\frac{11 a^3 \tan ^4(c+d x)}{20 d}+\frac{4 i a^3 \tan ^3(c+d x)}{3 d}+\frac{2 a^3 \tan ^2(c+d x)}{d}-\frac{4 i a^3 \tan (c+d x)}{d}+\frac{4 a^3 \log (\cos (c+d x))}{d}+4 i a^3 x \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^3*(a + I*a*Tan[c + d*x])^3,x]

[Out]

(4*I)*a^3*x + (4*a^3*Log[Cos[c + d*x]])/d - ((4*I)*a^3*Tan[c + d*x])/d + (2*a^3*Tan[c + d*x]^2)/d + (((4*I)/3)
*a^3*Tan[c + d*x]^3)/d - (11*a^3*Tan[c + d*x]^4)/(20*d) - (Tan[c + d*x]^4*(a^3 + I*a^3*Tan[c + d*x]))/(5*d)

Rule 3556

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(m + n - 1)), x] + Dist[a/(d*(m + n - 1
)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + a*d*(m + 2*n) + (a*c*(m - 2) +
b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a
^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] && (IntegerQ[m] || Intege
rsQ[2*m, 2*n])

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3525

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c - b
*d)*x, x] + (Dist[b*c + a*d, Int[Tan[e + f*x], x], x] + Simp[(b*d*Tan[e + f*x])/f, x]) /; FreeQ[{a, b, c, d, e
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \tan ^3(c+d x) (a+i a \tan (c+d x))^3 \, dx &=-\frac{\tan ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d}+\frac{1}{5} a \int \tan ^3(c+d x) (a+i a \tan (c+d x)) (9 a+11 i a \tan (c+d x)) \, dx\\ &=-\frac{11 a^3 \tan ^4(c+d x)}{20 d}-\frac{\tan ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d}+\frac{1}{5} a \int \tan ^3(c+d x) \left (20 a^2+20 i a^2 \tan (c+d x)\right ) \, dx\\ &=\frac{4 i a^3 \tan ^3(c+d x)}{3 d}-\frac{11 a^3 \tan ^4(c+d x)}{20 d}-\frac{\tan ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d}+\frac{1}{5} a \int \tan ^2(c+d x) \left (-20 i a^2+20 a^2 \tan (c+d x)\right ) \, dx\\ &=\frac{2 a^3 \tan ^2(c+d x)}{d}+\frac{4 i a^3 \tan ^3(c+d x)}{3 d}-\frac{11 a^3 \tan ^4(c+d x)}{20 d}-\frac{\tan ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d}+\frac{1}{5} a \int \tan (c+d x) \left (-20 a^2-20 i a^2 \tan (c+d x)\right ) \, dx\\ &=4 i a^3 x-\frac{4 i a^3 \tan (c+d x)}{d}+\frac{2 a^3 \tan ^2(c+d x)}{d}+\frac{4 i a^3 \tan ^3(c+d x)}{3 d}-\frac{11 a^3 \tan ^4(c+d x)}{20 d}-\frac{\tan ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d}-\left (4 a^3\right ) \int \tan (c+d x) \, dx\\ &=4 i a^3 x+\frac{4 a^3 \log (\cos (c+d x))}{d}-\frac{4 i a^3 \tan (c+d x)}{d}+\frac{2 a^3 \tan ^2(c+d x)}{d}+\frac{4 i a^3 \tan ^3(c+d x)}{3 d}-\frac{11 a^3 \tan ^4(c+d x)}{20 d}-\frac{\tan ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d}\\ \end{align*}

Mathematica [B]  time = 1.73758, size = 296, normalized size = 2.35 \[ \frac{a^3 \sec (c) \sec ^5(c+d x) \left (360 i \sin (2 c+d x)-280 i \sin (2 c+3 d x)+135 i \sin (4 c+3 d x)-83 i \sin (4 c+5 d x)+150 i d x \cos (2 c+3 d x)+105 \cos (2 c+3 d x)+150 i d x \cos (4 c+3 d x)+105 \cos (4 c+3 d x)+30 i d x \cos (4 c+5 d x)+30 i d x \cos (6 c+5 d x)+75 \cos (2 c+3 d x) \log \left (\cos ^2(c+d x)\right )+75 \cos (4 c+3 d x) \log \left (\cos ^2(c+d x)\right )+15 \cos (4 c+5 d x) \log \left (\cos ^2(c+d x)\right )+15 \cos (6 c+5 d x) \log \left (\cos ^2(c+d x)\right )+75 \cos (d x) \left (2 \log \left (\cos ^2(c+d x)\right )+4 i d x+3\right )+75 \cos (2 c+d x) \left (2 \log \left (\cos ^2(c+d x)\right )+4 i d x+3\right )-470 i \sin (d x)\right )}{240 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^3*(a + I*a*Tan[c + d*x])^3,x]

[Out]

(a^3*Sec[c]*Sec[c + d*x]^5*(105*Cos[2*c + 3*d*x] + (150*I)*d*x*Cos[2*c + 3*d*x] + 105*Cos[4*c + 3*d*x] + (150*
I)*d*x*Cos[4*c + 3*d*x] + (30*I)*d*x*Cos[4*c + 5*d*x] + (30*I)*d*x*Cos[6*c + 5*d*x] + 75*Cos[2*c + 3*d*x]*Log[
Cos[c + d*x]^2] + 75*Cos[4*c + 3*d*x]*Log[Cos[c + d*x]^2] + 15*Cos[4*c + 5*d*x]*Log[Cos[c + d*x]^2] + 15*Cos[6
*c + 5*d*x]*Log[Cos[c + d*x]^2] + 75*Cos[d*x]*(3 + (4*I)*d*x + 2*Log[Cos[c + d*x]^2]) + 75*Cos[2*c + d*x]*(3 +
 (4*I)*d*x + 2*Log[Cos[c + d*x]^2]) - (470*I)*Sin[d*x] + (360*I)*Sin[2*c + d*x] - (280*I)*Sin[2*c + 3*d*x] + (
135*I)*Sin[4*c + 3*d*x] - (83*I)*Sin[4*c + 5*d*x]))/(240*d)

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 118, normalized size = 0.9 \begin{align*}{\frac{-4\,i{a}^{3}\tan \left ( dx+c \right ) }{d}}-{\frac{{\frac{i}{5}}{a}^{3} \left ( \tan \left ( dx+c \right ) \right ) ^{5}}{d}}-{\frac{3\,{a}^{3} \left ( \tan \left ( dx+c \right ) \right ) ^{4}}{4\,d}}+{\frac{{\frac{4\,i}{3}}{a}^{3} \left ( \tan \left ( dx+c \right ) \right ) ^{3}}{d}}+2\,{\frac{{a}^{3} \left ( \tan \left ( dx+c \right ) \right ) ^{2}}{d}}-2\,{\frac{{a}^{3}\ln \left ( 1+ \left ( \tan \left ( dx+c \right ) \right ) ^{2} \right ) }{d}}+{\frac{4\,i{a}^{3}\arctan \left ( \tan \left ( dx+c \right ) \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^3*(a+I*a*tan(d*x+c))^3,x)

[Out]

-4*I*a^3*tan(d*x+c)/d-1/5*I/d*a^3*tan(d*x+c)^5-3/4*a^3*tan(d*x+c)^4/d+4/3*I*a^3*tan(d*x+c)^3/d+2*a^3*tan(d*x+c
)^2/d-2/d*a^3*ln(1+tan(d*x+c)^2)+4*I/d*a^3*arctan(tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 2.28724, size = 128, normalized size = 1.02 \begin{align*} -\frac{12 i \, a^{3} \tan \left (d x + c\right )^{5} + 45 \, a^{3} \tan \left (d x + c\right )^{4} - 80 i \, a^{3} \tan \left (d x + c\right )^{3} - 120 \, a^{3} \tan \left (d x + c\right )^{2} - 240 i \,{\left (d x + c\right )} a^{3} + 120 \, a^{3} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 240 i \, a^{3} \tan \left (d x + c\right )}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3*(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*(12*I*a^3*tan(d*x + c)^5 + 45*a^3*tan(d*x + c)^4 - 80*I*a^3*tan(d*x + c)^3 - 120*a^3*tan(d*x + c)^2 - 24
0*I*(d*x + c)*a^3 + 120*a^3*log(tan(d*x + c)^2 + 1) + 240*I*a^3*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 2.41947, size = 612, normalized size = 4.86 \begin{align*} \frac{2 \,{\left (240 \, a^{3} e^{\left (8 i \, d x + 8 i \, c\right )} + 585 \, a^{3} e^{\left (6 i \, d x + 6 i \, c\right )} + 695 \, a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} + 385 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + 83 \, a^{3} + 30 \,{\left (a^{3} e^{\left (10 i \, d x + 10 i \, c\right )} + 5 \, a^{3} e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, a^{3} e^{\left (6 i \, d x + 6 i \, c\right )} + 10 \, a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3}\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )\right )}}{15 \,{\left (d e^{\left (10 i \, d x + 10 i \, c\right )} + 5 \, d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 10 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3*(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

2/15*(240*a^3*e^(8*I*d*x + 8*I*c) + 585*a^3*e^(6*I*d*x + 6*I*c) + 695*a^3*e^(4*I*d*x + 4*I*c) + 385*a^3*e^(2*I
*d*x + 2*I*c) + 83*a^3 + 30*(a^3*e^(10*I*d*x + 10*I*c) + 5*a^3*e^(8*I*d*x + 8*I*c) + 10*a^3*e^(6*I*d*x + 6*I*c
) + 10*a^3*e^(4*I*d*x + 4*I*c) + 5*a^3*e^(2*I*d*x + 2*I*c) + a^3)*log(e^(2*I*d*x + 2*I*c) + 1))/(d*e^(10*I*d*x
 + 10*I*c) + 5*d*e^(8*I*d*x + 8*I*c) + 10*d*e^(6*I*d*x + 6*I*c) + 10*d*e^(4*I*d*x + 4*I*c) + 5*d*e^(2*I*d*x +
2*I*c) + d)

________________________________________________________________________________________

Sympy [A]  time = 10.0092, size = 216, normalized size = 1.71 \begin{align*} \frac{4 a^{3} \log{\left (e^{2 i d x} + e^{- 2 i c} \right )}}{d} + \frac{\frac{32 a^{3} e^{- 2 i c} e^{8 i d x}}{d} + \frac{78 a^{3} e^{- 4 i c} e^{6 i d x}}{d} + \frac{278 a^{3} e^{- 6 i c} e^{4 i d x}}{3 d} + \frac{154 a^{3} e^{- 8 i c} e^{2 i d x}}{3 d} + \frac{166 a^{3} e^{- 10 i c}}{15 d}}{e^{10 i d x} + 5 e^{- 2 i c} e^{8 i d x} + 10 e^{- 4 i c} e^{6 i d x} + 10 e^{- 6 i c} e^{4 i d x} + 5 e^{- 8 i c} e^{2 i d x} + e^{- 10 i c}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**3*(a+I*a*tan(d*x+c))**3,x)

[Out]

4*a**3*log(exp(2*I*d*x) + exp(-2*I*c))/d + (32*a**3*exp(-2*I*c)*exp(8*I*d*x)/d + 78*a**3*exp(-4*I*c)*exp(6*I*d
*x)/d + 278*a**3*exp(-6*I*c)*exp(4*I*d*x)/(3*d) + 154*a**3*exp(-8*I*c)*exp(2*I*d*x)/(3*d) + 166*a**3*exp(-10*I
*c)/(15*d))/(exp(10*I*d*x) + 5*exp(-2*I*c)*exp(8*I*d*x) + 10*exp(-4*I*c)*exp(6*I*d*x) + 10*exp(-6*I*c)*exp(4*I
*d*x) + 5*exp(-8*I*c)*exp(2*I*d*x) + exp(-10*I*c))

________________________________________________________________________________________

Giac [B]  time = 1.98299, size = 370, normalized size = 2.94 \begin{align*} \frac{2 \,{\left (30 \, a^{3} e^{\left (10 i \, d x + 10 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + 150 \, a^{3} e^{\left (8 i \, d x + 8 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + 300 \, a^{3} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + 300 \, a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + 150 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + 240 \, a^{3} e^{\left (8 i \, d x + 8 i \, c\right )} + 585 \, a^{3} e^{\left (6 i \, d x + 6 i \, c\right )} + 695 \, a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} + 385 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + 30 \, a^{3} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + 83 \, a^{3}\right )}}{15 \,{\left (d e^{\left (10 i \, d x + 10 i \, c\right )} + 5 \, d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 10 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3*(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

2/15*(30*a^3*e^(10*I*d*x + 10*I*c)*log(e^(2*I*d*x + 2*I*c) + 1) + 150*a^3*e^(8*I*d*x + 8*I*c)*log(e^(2*I*d*x +
 2*I*c) + 1) + 300*a^3*e^(6*I*d*x + 6*I*c)*log(e^(2*I*d*x + 2*I*c) + 1) + 300*a^3*e^(4*I*d*x + 4*I*c)*log(e^(2
*I*d*x + 2*I*c) + 1) + 150*a^3*e^(2*I*d*x + 2*I*c)*log(e^(2*I*d*x + 2*I*c) + 1) + 240*a^3*e^(8*I*d*x + 8*I*c)
+ 585*a^3*e^(6*I*d*x + 6*I*c) + 695*a^3*e^(4*I*d*x + 4*I*c) + 385*a^3*e^(2*I*d*x + 2*I*c) + 30*a^3*log(e^(2*I*
d*x + 2*I*c) + 1) + 83*a^3)/(d*e^(10*I*d*x + 10*I*c) + 5*d*e^(8*I*d*x + 8*I*c) + 10*d*e^(6*I*d*x + 6*I*c) + 10
*d*e^(4*I*d*x + 4*I*c) + 5*d*e^(2*I*d*x + 2*I*c) + d)